1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
pub use self::port_packet::*;
use super::*;
use crate::object::*;
use alloc::collections::{BTreeSet, VecDeque};
use alloc::sync::Arc;
use bitflags::bitflags;
use spin::Mutex;
#[path = "port_packet.rs"]
mod port_packet;
const MAX_ALLOCATED_PACKET_COUNT: usize = 16 * 1024;
const MAX_ALLOCATED_PACKET_COUNT_PER_PORT: usize = MAX_ALLOCATED_PACKET_COUNT / 8;
pub struct Port {
base: KObjectBase,
options: PortOptions,
inner: Mutex<PortInner>,
}
impl_kobject!(Port);
#[derive(Default, Debug)]
struct PortInner {
queue: VecDeque<PortPacket>,
interrupt_queue: VecDeque<PortInterruptPacket>,
interrupt_grave: BTreeSet<u64>,
interrupt_pid: u64,
}
#[derive(Debug)]
struct PortInterruptPacket {
timestamp: i64,
key: u64,
pid: u64,
}
impl From<PortInterruptPacket> for PacketInterrupt {
fn from(packet: PortInterruptPacket) -> Self {
PacketInterrupt {
timestamp: packet.timestamp,
_reserved0: 0,
_reserved1: 0,
_reserved2: 0,
}
}
}
impl Port {
pub fn new(options: u32) -> ZxResult<Arc<Self>> {
Ok(Arc::new(Port {
base: KObjectBase::default(),
options: PortOptions::from_bits(options).ok_or(ZxError::INVALID_ARGS)?,
inner: Mutex::default(),
}))
}
pub fn push(&self, packet: impl Into<PortPacket>) {
let mut inner = self.inner.lock();
inner.queue.push_back(packet.into());
drop(inner);
self.base.signal_set(Signal::READABLE);
}
pub fn push_user(&self, packet: impl Into<PortPacket>) -> ZxResult<()> {
let mut packet = packet.into();
packet.type_ = PacketType::User;
if self.inner.lock().queue.len() > MAX_ALLOCATED_PACKET_COUNT_PER_PORT {
return Err(ZxError::SHOULD_WAIT);
}
self.push(packet);
Ok(())
}
pub(crate) fn push_interrupt(&self, timestamp: i64, key: u64) -> u64 {
let mut inner = self.inner.lock();
inner.interrupt_pid += 1;
let pid = inner.interrupt_pid;
inner.interrupt_queue.push_back(PortInterruptPacket {
timestamp,
key,
pid,
});
inner.interrupt_grave.insert(pid);
drop(inner);
self.base.signal_set(Signal::READABLE);
pid
}
pub(crate) fn remove_interrupt(&self, pid: u64) -> bool {
let mut inner = self.inner.lock();
inner.interrupt_grave.remove(&pid)
}
pub async fn wait(self: &Arc<Self>) -> PortPacket {
let object = self.clone() as Arc<dyn KernelObject>;
loop {
object.wait_signal(Signal::READABLE).await;
let mut inner = self.inner.lock();
if self.can_bind_to_interrupt() {
while let Some(packet) = inner.interrupt_queue.pop_front() {
let in_queue = inner.interrupt_grave.remove(&packet.pid);
if inner.queue.is_empty() && inner.interrupt_queue.is_empty() {
self.base.signal_clear(Signal::READABLE);
}
if !in_queue {
continue;
}
return PortPacketRepr {
key: packet.key,
status: ZxError::OK,
data: PayloadRepr::Interrupt(packet.into()),
}
.into();
}
}
if let Some(packet) = inner.queue.pop_front() {
if inner.queue.is_empty()
&& (inner.interrupt_queue.is_empty() || !self.can_bind_to_interrupt())
{
self.base.signal_clear(Signal::READABLE);
}
return packet;
}
}
}
#[allow(dead_code)]
fn len(&self) -> usize {
self.inner.lock().queue.len()
}
pub fn can_bind_to_interrupt(&self) -> bool {
self.options.contains(PortOptions::BIND_TO_INTERUPT)
}
}
bitflags! {
pub struct PortOptions: u32 {
#[allow(clippy::identity_op)]
const BIND_TO_INTERUPT = 1 << 0;
}
}
#[cfg(test)]
mod tests {
use super::*;
use std::time::Duration;
#[test]
fn new() {
assert!(Port::new(0).is_ok());
assert!(Port::new(1).is_ok());
assert_eq!(Port::new(2).unwrap_err(), ZxError::INVALID_ARGS);
}
#[async_std::test]
async fn wait() {
let port = Port::new(0).unwrap();
let object = DummyObject::new() as Arc<dyn KernelObject>;
object.send_signal_to_port_async(Signal::READABLE, &port, 1);
let packet_repr2 = PortPacketRepr {
key: 2,
status: ZxError::OK,
data: PayloadRepr::Signal(PacketSignal {
trigger: Signal::WRITABLE,
observed: Signal::WRITABLE,
count: 1,
timestamp: 0,
_reserved1: 0,
}),
};
async_std::task::spawn({
let port = port.clone();
let object = object.clone();
let packet2 = packet_repr2.clone();
async move {
object.signal_set(Signal::USER_SIGNAL_0);
object.signal_clear(Signal::USER_SIGNAL_0);
object.signal_set(Signal::READABLE);
async_std::task::sleep(Duration::from_millis(1)).await;
port.push(packet2);
}
});
let packet = port.wait().await;
let packet_repr = PortPacketRepr {
key: 1,
status: ZxError::OK,
data: PayloadRepr::Signal(PacketSignal {
trigger: Signal::READABLE,
observed: Signal::READABLE,
count: 1,
timestamp: 0,
_reserved1: 0,
}),
};
assert_eq!(PortPacketRepr::from(&packet), packet_repr);
let packet = port.wait().await;
assert_eq!(PortPacketRepr::from(&packet), packet_repr2);
let port = Port::new(0).unwrap();
let object = DummyObject::new() as Arc<dyn KernelObject>;
object.signal_set(Signal::READABLE);
object.send_signal_to_port_async(Signal::READABLE, &port, 1);
let packet = port.wait().await;
assert_eq!(PortPacketRepr::from(&packet), packet_repr);
}
}