1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
use {
    crate::object::*,
    alloc::collections::VecDeque,
    alloc::sync::{Arc, Weak},
    bitflags::bitflags,
    spin::Mutex,
};

/// Bidirectional streaming IPC transport.
///
/// # SYNOPSIS
///
/// Sockets are a bidirectional stream transport.
/// Unlike channels, sockets only move data (not handles).
pub struct Socket {
    base: KObjectBase,
    peer: Weak<Socket>,
    flags: SocketFlags, // constant value
    inner: Mutex<SocketInner>,
}

#[derive(Default)]
struct SocketInner {
    data: VecDeque<u8>,
    datagram_len: VecDeque<usize>,
    read_threshold: usize,
    write_threshold: usize,
    read_disabled: bool,
}

const SOCKET_SIZE: usize = 128 * 2048;

impl_kobject!(Socket
    fn peer(&self) -> ZxResult<Arc<dyn KernelObject>> {
        let peer = self.peer.upgrade().ok_or(ZxError::PEER_CLOSED)?;
        Ok(peer)
    }
    fn related_koid(&self) -> KoID {
        self.peer.upgrade().map(|p| p.id()).unwrap_or(0)
    }
);

bitflags! {
    /// Signals that waitable kernel objects expose to applications.
    #[derive(Default)]
    pub struct SocketFlags: u32 {
        #[allow(clippy::identity_op)]
        // These options can be passed to socket_shutdown().
        /// Via this option to `socket_shutdown()`, one end of the socket can be closed for writing.
        const SHUTDOWN_WRITE                = 1;
        /// Via this option to `socket_shutdown()`, one end of the socket can be closed for reading.
        const SHUTDOWN_READ                 = 1 << 1;
        /// Valid flags of `socket_shutdown()`.
        const SHUTDOWN_MASK                 = Self::SHUTDOWN_WRITE.bits | Self::SHUTDOWN_READ.bits;

        // These can be passed to socket_create().
        // const STREAM                     = 0; // Don't use contains
        /// Create a datagram socket. See [`read`] and [`write`] for details.
        ///
        /// [`read`]: struct.Socket.html#method.read
        /// [`write`]: struct.Socket.html#method.write
        const DATAGRAM                      = 1;
        /// Valid flags of `socket_create()`.
        const CREATE_MASK                   = Self::DATAGRAM.bits;

        // These can be passed to socket_read().
        /// Leave the message in the socket.
        const SOCKET_PEEK                   = 1 << 3;
    }
}

impl Socket {
    /// Create a socket.
    #[allow(unsafe_code)]
    pub fn create(flags: u32) -> ZxResult<(Arc<Self>, Arc<Self>)> {
        let flags = SocketFlags::from_bits(flags).ok_or(ZxError::INVALID_ARGS)?;
        if !(flags - SocketFlags::CREATE_MASK).is_empty() {
            return Err(ZxError::INVALID_ARGS);
        }
        let starting_signals: Signal = Signal::WRITABLE;
        let mut end0 = Arc::new(Socket {
            base: KObjectBase::with_signal(starting_signals),
            peer: Weak::default(),
            flags,
            inner: Default::default(),
        });
        let end1 = Arc::new(Socket {
            base: KObjectBase::with_signal(starting_signals),
            peer: Arc::downgrade(&end0),
            flags,
            inner: Default::default(),
        });
        // no other reference of `end0`
        unsafe {
            Arc::get_mut_unchecked(&mut end0).peer = Arc::downgrade(&end1);
        }
        Ok((end0, end1))
    }

    /// Write data to the socket. If successful, the number of bytes actually written are returned.
    ///
    /// A **SOCKET_STREAM**(default) socket write can be short if the socket does not have
    /// enough space for all of *data*.
    /// Otherwise, if the socket was already full, the call returns **ZxError::SHOULD_WAIT**.
    ///
    ///
    /// A **SOCKET_DATAGRAM** socket write is never short. If the socket has
    /// insufficient space for *data*, it writes nothing and returns
    /// **ZxError::SHOULD_WAIT**. Attempting to write a packet larger than the datagram socket's
    /// capacity will fail with **ZxError::OUT_OF_RANGE**.
    pub fn write(&self, data: &[u8]) -> ZxResult<usize> {
        if self.base.signal().contains(Signal::SOCKET_WRITE_DISABLED) {
            return Err(ZxError::BAD_STATE);
        }
        let peer = self.peer.upgrade().ok_or(ZxError::PEER_CLOSED)?;
        let actual_count = peer.write_data(data)?;
        if actual_count > 0 {
            let mut clear = Signal::empty();
            let peer_inner = peer.inner.lock();
            let inner = self.inner.lock();
            let peer_rest_size = SOCKET_SIZE - peer_inner.data.len();
            if peer_rest_size == 0 {
                clear |= Signal::WRITABLE;
            }
            if inner.write_threshold > 0 && peer_rest_size < inner.write_threshold {
                clear |= Signal::SOCKET_WRITE_THRESHOLD;
            }
            self.base.signal_clear(clear);
        }
        Ok(actual_count)
    }

    fn write_data(&self, data: &[u8]) -> ZxResult<usize> {
        let curr_size = self.inner.lock().data.len();
        let was_empty = curr_size == 0;
        let rest_size = SOCKET_SIZE - curr_size;
        if rest_size == 0 {
            return Err(ZxError::SHOULD_WAIT);
        }
        let write_size = data.len().min(rest_size);
        let actual_count = if self.flags.contains(SocketFlags::DATAGRAM) {
            if data.len() > SOCKET_SIZE {
                return Err(ZxError::OUT_OF_RANGE);
            }
            self.write_datagram(&data[..write_size])?
        } else {
            self.write_stream(&data[..write_size])?
        };
        if actual_count > 0 {
            let mut set = Signal::empty();
            if was_empty {
                set |= Signal::READABLE;
            }
            let inner = self.inner.lock();
            if inner.read_threshold > 0 && inner.data.len() >= inner.read_threshold {
                set |= Signal::SOCKET_READ_THRESHOLD;
            }
            self.base.signal_set(set);
        }
        Ok(actual_count)
    }

    fn write_datagram(&self, data: &[u8]) -> ZxResult<usize> {
        if data.is_empty() {
            return Err(ZxError::INVALID_ARGS);
        }
        let mut inner = self.inner.lock();
        let actual_count = data.len();
        inner.data.extend(data);
        inner.datagram_len.push_back(actual_count);
        Ok(actual_count)
    }

    fn write_stream(&self, data: &[u8]) -> ZxResult<usize> {
        let actual_count = data.len();
        let mut inner = self.inner.lock();
        inner.data.extend(data);
        Ok(actual_count)
    }

    /// Read data from the socket. If successful, the number of bytes actually read are returned.
    ///
    /// If the socket was created with **SOCKET_DATAGRAM**, this method reads
    /// only the first available datagram in the socket (if one is present).
    /// If *data* is too small for the datagram, then the read will be
    /// truncated, and any remaining bytes in the datagram will be discarded.
    ///
    /// If `peek` is true, leave the message in the socket. Otherwise consume the message.
    pub fn read(&self, peek: bool, data: &mut [u8]) -> ZxResult<usize> {
        let curr_size = self.inner.lock().data.len();
        if curr_size == 0 {
            let _peer = self.peer.upgrade().ok_or(ZxError::PEER_CLOSED)?;
            let inner = self.inner.lock();
            if inner.read_disabled {
                return Err(ZxError::BAD_STATE);
            }
            return Err(ZxError::SHOULD_WAIT);
        }
        let was_full = curr_size == SOCKET_SIZE;
        let actual_count = if self.flags.contains(SocketFlags::DATAGRAM) {
            self.read_datagram(data, peek)?
        } else {
            self.read_stream(data, peek)?
        };
        if !peek && actual_count > 0 {
            let inner = self.inner.lock();
            let mut clear = Signal::empty();
            if inner.read_threshold > 0 && inner.data.len() < inner.read_threshold {
                clear |= Signal::SOCKET_READ_THRESHOLD;
            }
            if inner.data.is_empty() {
                clear |= Signal::READABLE;
            }
            self.base.signal_clear(clear);
            if let Ok(peer) = self.peer.upgrade().ok_or(ZxError::PEER_CLOSED) {
                let mut set = Signal::empty();
                let peer_inner = peer.inner.lock();
                if peer_inner.write_threshold > 0
                    && SOCKET_SIZE - inner.data.len() >= peer_inner.write_threshold
                {
                    set |= Signal::SOCKET_WRITE_THRESHOLD;
                }
                if was_full {
                    set |= Signal::WRITABLE;
                }
                peer.base.signal_set(set);
            }
        }
        Ok(actual_count)
    }

    fn read_datagram(&self, data: &mut [u8], peek: bool) -> ZxResult<usize> {
        if data.is_empty() {
            return Ok(0);
        }
        let mut inner = self.inner.lock();
        let datagram_len = if peek {
            *inner.datagram_len.get(0).unwrap()
        } else {
            inner.datagram_len.pop_front().unwrap()
        };
        let read_size = data.len().min(datagram_len);
        if peek {
            for (i, x) in inner.data.iter().take(read_size).enumerate() {
                data[i] = *x;
            }
        } else {
            for (i, x) in inner.data.drain(..datagram_len).take(read_size).enumerate() {
                data[i] = x;
            }
        };
        Ok(read_size)
    }

    fn read_stream(&self, data: &mut [u8], peek: bool) -> ZxResult<usize> {
        let mut inner = self.inner.lock();
        let read_size = data.len().min(inner.data.len());
        if peek {
            for (i, x) in inner.data.iter().take(read_size).enumerate() {
                data[i] = *x;
            }
        } else {
            for (i, x) in inner.data.drain(..read_size).enumerate() {
                data[i] = x;
            }
        };
        Ok(read_size)
    }

    /// Get information of the socket.
    pub fn get_info(&self) -> SocketInfo {
        let inner = self.inner.lock();
        let self_size = inner.data.len();
        let rx_buf_available = if self.flags.contains(SocketFlags::DATAGRAM) {
            *inner.datagram_len.get(0).unwrap_or(&0)
        } else {
            self_size
        };
        let mut info = SocketInfo {
            options: self.flags.bits() as _,
            padding1: 0,
            rx_buf_max: SOCKET_SIZE as _,
            rx_buf_size: self_size as _,
            rx_buf_available: rx_buf_available as _,
            tx_buf_max: 0,
            tx_buf_size: 0,
        };
        if let Some(peer) = self.peer.upgrade() {
            info.tx_buf_size = peer.inner.lock().data.len() as u64;
            info.tx_buf_max = SOCKET_SIZE as u64;
        };
        info
    }

    /// Prevent reading or writing.
    pub fn shutdown(&self, read: bool, write: bool) -> ZxResult {
        self.shutdown_self(read, write)?;
        if let Some(peer) = self.peer.upgrade() {
            peer.shutdown_self(!read, !write)?;
        }
        Ok(())
    }

    fn shutdown_self(&self, read: bool, write: bool) -> ZxResult {
        let mut set = Signal::empty();
        let mut clear = Signal::empty();
        let mut inner = self.inner.lock();
        if read {
            inner.read_disabled = true;
            set |= Signal::SOCKET_PEER_WRITE_DISABLED;
        }
        if write {
            clear |= Signal::WRITABLE;
            set |= Signal::SOCKET_WRITE_DISABLED;
        }
        self.base.signal_change(clear, set);
        Ok(())
    }

    /// Set the read threshold of the socket.
    ///
    /// When the bytes queued on the socket (available for reading) is equal to
    /// or greater than this value, the **SOCKET_READ_THRESHOLD** signal is asserted.
    /// Read threshold signalling is disabled by default (and when set, writing
    /// a value of 0 for this property disables it).
    pub fn set_read_threshold(&self, threshold: usize) -> ZxResult {
        if threshold > SOCKET_SIZE {
            return Err(ZxError::INVALID_ARGS);
        }
        let mut inner = self.inner.lock();
        inner.read_threshold = threshold;
        if threshold == 0 {
            self.base.signal_clear(Signal::SOCKET_READ_THRESHOLD);
        } else if inner.data.len() >= threshold {
            self.base.signal_set(Signal::SOCKET_READ_THRESHOLD);
        } else {
            self.base.signal_clear(Signal::SOCKET_READ_THRESHOLD);
        }
        Ok(())
    }

    /// Set the write threshold of the socket.
    ///
    /// When the space available for writing on the socket is equal to or
    /// greater than this value, the **SOCKET_WRITE_THRESHOLD** signal is asserted.
    /// Write threshold signalling is disabled by default (and when set, writing a
    /// value of 0 for this property disables it).
    pub fn set_write_threshold(&self, threshold: usize) -> ZxResult {
        let peer = self.peer.upgrade().ok_or(ZxError::PEER_CLOSED)?;
        if threshold > SOCKET_SIZE {
            return Err(ZxError::INVALID_ARGS);
        }
        self.inner.lock().write_threshold = threshold;
        if threshold == 0 {
            self.base.signal_clear(Signal::SOCKET_WRITE_THRESHOLD);
        } else if SOCKET_SIZE - peer.inner.lock().data.len() >= threshold {
            self.base.signal_set(Signal::SOCKET_WRITE_THRESHOLD);
        } else {
            self.base.signal_clear(Signal::SOCKET_WRITE_THRESHOLD);
        }
        Ok(())
    }

    /// Get the read and write thresholds of the socket.
    pub fn get_rx_tx_threshold(&self) -> (usize, usize) {
        let inner = self.inner.lock();
        (inner.read_threshold, inner.write_threshold)
    }
}

impl Drop for Socket {
    fn drop(&mut self) {
        if let Some(peer) = self.peer.upgrade() {
            peer.signal_change(Signal::WRITABLE, Signal::PEER_CLOSED);
        }
    }
}

/// The information of a socket
#[repr(C)]
#[derive(Debug, Eq, PartialEq)]
pub struct SocketInfo {
    options: u32,
    padding1: u32,
    rx_buf_max: u64,
    rx_buf_size: u64,
    rx_buf_available: u64,
    tx_buf_max: u64,
    tx_buf_size: u64,
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn test_basics() {
        assert_eq!(Socket::create(1 << 10).unwrap_err(), ZxError::INVALID_ARGS);
        assert_eq!(
            Socket::create(SocketFlags::SOCKET_PEEK.bits).unwrap_err(),
            ZxError::INVALID_ARGS
        );
        let (end0, end1) = Socket::create(1).unwrap();
        assert!(Arc::ptr_eq(
            &end0.peer().unwrap().downcast_arc().unwrap(),
            &end1
        ));
        assert_eq!(end0.related_koid(), end1.id());

        drop(end1);
        assert_eq!(end0.peer().unwrap_err(), ZxError::PEER_CLOSED);
        assert_eq!(end0.related_koid(), 0);
    }

    #[test]
    fn test_stream() {
        let (end0, end1) = Socket::create(0).unwrap();

        // empty read & write
        assert_eq!(
            end0.read(false, &mut [0; 10]).unwrap_err(),
            ZxError::SHOULD_WAIT
        );
        assert_eq!(end0.write(&[]).unwrap(), 0);

        assert_eq!(end0.write(&[1, 2, 3]), Ok(3));
        let mut buf = [0u8; 4];
        assert_eq!(end1.read(true, &mut buf).unwrap(), 3);
        assert_eq!(buf, [1, 2, 3, 0]);
        buf = [0; 4];
        // can read again
        assert_eq!(end1.read(true, &mut buf).unwrap(), 3);
        assert_eq!(buf, [1, 2, 3, 0]);
        assert_eq!(
            end0.get_info(),
            SocketInfo {
                options: 0,
                padding1: 0,
                rx_buf_max: SOCKET_SIZE as _,
                rx_buf_size: 0,
                rx_buf_available: 0,
                tx_buf_max: SOCKET_SIZE as _,
                tx_buf_size: 3,
            }
        );

        // use a small buffer now
        let mut buf = [0u8; 2];
        assert_eq!(end1.read(true, &mut buf).unwrap(), 2);
        assert_eq!(buf, [1, 2]);
        // consume
        assert_eq!(end1.read(false, &mut buf).unwrap(), 2);
        assert_eq!(buf, [1, 2]);
        assert_eq!(end1.read(false, &mut buf).unwrap(), 1);
        assert_eq!(buf, [3, 2]);

        end1.write(&[111, 233, 222]).unwrap();
        assert_eq!(
            end0.get_info(),
            SocketInfo {
                options: 0,
                padding1: 0,
                rx_buf_max: SOCKET_SIZE as _,
                rx_buf_size: 3,
                rx_buf_available: 3,
                tx_buf_max: SOCKET_SIZE as _,
                tx_buf_size: 0,
            }
        );

        // write much data
        assert_eq!(end0.write(&[0; SOCKET_SIZE * 2]).unwrap(), SOCKET_SIZE);
        assert_eq!(end0.write(&[0; 1]).unwrap_err(), ZxError::SHOULD_WAIT);
        assert!(!end0.signal().contains(Signal::WRITABLE));
        end1.read(false, &mut [0; 1]).unwrap();
        assert!(end0.signal().contains(Signal::WRITABLE));
    }

    #[test]
    fn test_datagram() {
        let (end0, end1) = Socket::create(1).unwrap();

        // empty read & write
        assert_eq!(
            end0.read(false, &mut [0; 10]).unwrap_err(),
            ZxError::SHOULD_WAIT
        );
        assert_eq!(end0.write(&[]).unwrap_err(), ZxError::INVALID_ARGS);

        assert_eq!(end0.write(&[1, 2, 3]), Ok(3));
        assert_eq!(end0.write(&[4, 5, 6, 7]), Ok(4));

        let mut buf = [0u8; 4];
        assert_eq!(end1.read(true, &mut []).unwrap(), 0);
        assert_eq!(end1.read(true, &mut buf).unwrap(), 3);
        assert_eq!(buf, [1, 2, 3, 0]);
        buf = [0; 4];
        // can read again
        assert_eq!(end1.read(true, &mut buf).unwrap(), 3);
        assert_eq!(buf, [1, 2, 3, 0]);
        assert_eq!(
            end0.get_info(),
            SocketInfo {
                options: SocketFlags::DATAGRAM.bits,
                padding1: 0,
                rx_buf_max: SOCKET_SIZE as _,
                rx_buf_size: 0,
                rx_buf_available: 0,
                tx_buf_max: SOCKET_SIZE as _,
                tx_buf_size: 7,
            }
        );
        assert_eq!(
            end1.get_info(),
            SocketInfo {
                options: SocketFlags::DATAGRAM.bits,
                padding1: 0,
                rx_buf_max: SOCKET_SIZE as _,
                rx_buf_size: 7,
                rx_buf_available: 3,
                tx_buf_max: SOCKET_SIZE as _,
                tx_buf_size: 0,
            }
        );

        // use a small buffer now
        let mut buf = [0u8; 2];
        assert_eq!(end1.read(true, &mut buf).unwrap(), 2);
        assert_eq!(buf, [1, 2]);
        // consume
        assert_eq!(end1.read(false, &mut buf).unwrap(), 2);
        assert_eq!(buf, [1, 2]);
        assert_eq!(end1.read(false, &mut buf).unwrap(), 2);
        assert_eq!(buf, [4, 5]);

        // write much data
        let (end0, end1) = Socket::create(1).unwrap();
        assert_eq!(
            end0.write(&[0; SOCKET_SIZE * 2]).unwrap_err(),
            ZxError::OUT_OF_RANGE
        );
        assert_eq!(end0.write(&[0; SOCKET_SIZE]).unwrap(), SOCKET_SIZE);
        assert!(!end0.signal().contains(Signal::WRITABLE));
        end1.read(false, &mut [0; 1]).unwrap();
        assert!(end0.signal().contains(Signal::WRITABLE));
    }

    #[test]
    fn test_threshold() {
        let (end0, end1) = Socket::create(0).unwrap();
        assert_eq!(end0.get_rx_tx_threshold(), (0, 0));

        // write
        assert_eq!(
            end0.set_write_threshold(SOCKET_SIZE * 2).unwrap_err(),
            ZxError::INVALID_ARGS
        );
        // have space when setting threshold
        assert!(end0.set_write_threshold(10).is_ok());
        assert!(end0.signal().contains(Signal::SOCKET_WRITE_THRESHOLD));
        assert_eq!(end0.get_rx_tx_threshold(), (0, 10));
        end0.write(&[0; SOCKET_SIZE - 9]).unwrap();
        assert!(!end0.signal().contains(Signal::SOCKET_WRITE_THRESHOLD));
        // no space when setting threshold
        assert!(end0.set_write_threshold(20).is_ok());
        assert!(!end0.signal().contains(Signal::SOCKET_WRITE_THRESHOLD));
        end1.read(false, &mut [0; 10]).unwrap();
        assert!(!end0.signal().contains(Signal::SOCKET_WRITE_THRESHOLD));
        end1.read(false, &mut [0; 1]).unwrap();
        assert!(end0.signal().contains(Signal::SOCKET_WRITE_THRESHOLD));
        // disable threshold
        assert!(end0.set_write_threshold(0).is_ok());
        assert!(!end0.signal().contains(Signal::SOCKET_WRITE_THRESHOLD));

        // read
        assert_eq!(
            end0.set_read_threshold(SOCKET_SIZE * 2).unwrap_err(),
            ZxError::INVALID_ARGS
        );
        // have data when setting threshold
        end1.write(&[0; 10]).unwrap();
        assert!(end0.set_read_threshold(10).is_ok());
        assert!(end0.signal().contains(Signal::SOCKET_READ_THRESHOLD));
        assert_eq!(end0.get_rx_tx_threshold(), (10, 0));
        end0.read(false, &mut [0; 1]).unwrap();
        assert!(!end0.signal().contains(Signal::SOCKET_READ_THRESHOLD));
        // no data when setting threshold
        end0.read(false, &mut [0; 10]).unwrap();
        assert!(end0.set_read_threshold(20).is_ok());
        assert!(!end0.signal().contains(Signal::SOCKET_WRITE_THRESHOLD));
        end1.write(&[0; 10]).unwrap();
        assert!(!end0.signal().contains(Signal::SOCKET_READ_THRESHOLD));
        end1.write(&[0; 10]).unwrap();
        assert!(end0.signal().contains(Signal::SOCKET_READ_THRESHOLD));
        // disable threshold
        assert!(end0.set_read_threshold(0).is_ok());
        assert!(!end0.signal().contains(Signal::SOCKET_READ_THRESHOLD));
    }

    #[test]
    fn test_shutdown() {
        let (end0, end1) = Socket::create(0).unwrap();
        end0.write(&[0; 10]).unwrap();

        assert!(end1.shutdown(true, false).is_ok());
        assert_eq!(end0.write(&[0; 1]).unwrap_err(), ZxError::BAD_STATE);
        assert!(!end0.signal().contains(Signal::WRITABLE));
        // buffered data can be read
        assert!(end1.signal().contains(Signal::READABLE));
        assert_eq!(end1.read(false, &mut [0; 20]).unwrap(), 10);
        // no more data
        assert!(!end1.signal().contains(Signal::READABLE));
        assert_eq!(
            end1.read(false, &mut [0; 20]).unwrap_err(),
            ZxError::BAD_STATE
        );
        // the opposite direction is still okay
        assert_eq!(end1.write(&[0; 1]).unwrap(), 1);
        assert_eq!(end0.read(false, &mut [0; 10]).unwrap(), 1);
    }

    #[test]
    fn test_drop() {
        let (end0, end1) = Socket::create(0).unwrap();
        end0.write(&[0; 10]).unwrap();

        drop(end0);
        assert!(!end1.signal().contains(Signal::WRITABLE));
        assert!(end1.signal().contains(Signal::PEER_CLOSED));
        assert_eq!(end1.write(&[0; 1]).unwrap_err(), ZxError::PEER_CLOSED);
        // buffered data can be read
        assert!(end1.signal().contains(Signal::READABLE));
        assert_eq!(end1.read(false, &mut [0; 20]).unwrap(), 10);
        // no more data
        assert!(!end1.signal().contains(Signal::READABLE));
        assert_eq!(
            end1.read(false, &mut [0; 20]).unwrap_err(),
            ZxError::PEER_CLOSED
        );
    }
}