1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
use {
crate::object::*,
alloc::collections::VecDeque,
alloc::sync::{Arc, Weak},
spin::Mutex,
};
pub struct Fifo {
base: KObjectBase,
peer: Weak<Fifo>,
elem_count: usize,
elem_size: usize,
recv_queue: Mutex<VecDeque<u8>>,
}
impl_kobject!(Fifo
fn peer(&self) -> ZxResult<Arc<dyn KernelObject>> {
let peer = self.peer.upgrade().ok_or(ZxError::PEER_CLOSED)?;
Ok(peer)
}
fn related_koid(&self) -> KoID {
self.peer.upgrade().map(|p| p.id()).unwrap_or(0)
}
);
impl Fifo {
#[allow(unsafe_code)]
pub fn create(elem_count: usize, elem_size: usize) -> (Arc<Self>, Arc<Self>) {
let mut end0 = Arc::new(Fifo {
base: KObjectBase::with_signal(Signal::WRITABLE),
peer: Weak::default(),
elem_count,
elem_size,
recv_queue: Mutex::new(VecDeque::with_capacity(elem_count * elem_size)),
});
let end1 = Arc::new(Fifo {
base: KObjectBase::with_signal(Signal::WRITABLE),
peer: Arc::downgrade(&end0),
elem_count,
elem_size,
recv_queue: Mutex::new(VecDeque::with_capacity(elem_count * elem_size)),
});
unsafe {
Arc::get_mut_unchecked(&mut end0).peer = Arc::downgrade(&end1);
}
(end0, end1)
}
pub fn write(&self, elem_size: usize, data: &[u8], count: usize) -> ZxResult<usize> {
if elem_size != self.elem_size || count == 0 {
return Err(ZxError::OUT_OF_RANGE);
}
let count_size = count * elem_size;
assert_eq!(data.len(), count_size);
let peer = self.peer.upgrade().ok_or(ZxError::PEER_CLOSED)?;
let mut recv_queue = peer.recv_queue.lock();
let rest_capacity = self.capacity() - recv_queue.len();
if rest_capacity == 0 {
return Err(ZxError::SHOULD_WAIT);
}
if recv_queue.is_empty() {
peer.base.signal_set(Signal::READABLE);
}
let write_len = count_size.min(rest_capacity);
recv_queue.extend(&data[..write_len]);
if recv_queue.len() == self.capacity() {
self.base.signal_clear(Signal::WRITABLE);
}
Ok(write_len / elem_size)
}
pub fn read(&self, elem_size: usize, data: &mut [u8], count: usize) -> ZxResult<usize> {
if elem_size != self.elem_size || count == 0 {
return Err(ZxError::OUT_OF_RANGE);
}
let count_size = count * elem_size;
assert_eq!(data.len(), count_size);
let peer = self.peer.upgrade();
let mut recv_queue = self.recv_queue.lock();
if recv_queue.is_empty() {
if peer.is_none() {
return Err(ZxError::PEER_CLOSED);
}
return Err(ZxError::SHOULD_WAIT);
}
let read_size = count_size.min(recv_queue.len());
if recv_queue.len() == self.capacity() {
if let Some(peer) = peer {
peer.base.signal_set(Signal::WRITABLE);
}
}
for (i, x) in recv_queue.drain(..read_size).enumerate() {
data[i] = x;
}
if recv_queue.is_empty() {
self.base.signal_clear(Signal::READABLE);
}
Ok(read_size / elem_size)
}
fn capacity(&self) -> usize {
self.elem_size * self.elem_count
}
}
impl Drop for Fifo {
fn drop(&mut self) {
if let Some(peer) = self.peer.upgrade() {
peer.base
.signal_change(Signal::WRITABLE, Signal::PEER_CLOSED);
}
}
}
#[cfg(test)]
mod tests {
use super::*;
use alloc::vec::Vec;
#[test]
fn test_basics() {
let (end0, end1) = Fifo::create(10, 5);
assert!(Arc::ptr_eq(
&end0.peer().unwrap().downcast_arc().unwrap(),
&end1
));
assert_eq!(end0.related_koid(), end1.id());
drop(end1);
assert_eq!(end0.peer().unwrap_err(), ZxError::PEER_CLOSED);
assert_eq!(end0.related_koid(), 0);
}
#[test]
fn read_write() {
let (end0, end1) = Fifo::create(2, 5);
assert_eq!(
end0.write(4, &[0; 9], 1).unwrap_err(),
ZxError::OUT_OF_RANGE
);
assert_eq!(
end0.write(5, &[0; 0], 0).unwrap_err(),
ZxError::OUT_OF_RANGE
);
let data = (0..15).collect::<Vec<u8>>();
assert_eq!(end0.write(5, data.as_slice(), 3).unwrap(), 2);
assert_eq!(
end0.write(5, data.as_slice(), 3).unwrap_err(),
ZxError::SHOULD_WAIT
);
let mut buf = [0; 15];
assert_eq!(
end1.read(4, &mut [0; 4], 1).unwrap_err(),
ZxError::OUT_OF_RANGE
);
assert_eq!(end1.read(5, &mut [], 0).unwrap_err(), ZxError::OUT_OF_RANGE);
assert_eq!(end1.read(5, &mut buf, 3).unwrap(), 2);
let mut data = (0..10).collect::<Vec<u8>>();
data.append(&mut vec![0; 5]);
assert_eq!(buf, data.as_slice());
assert_eq!(end1.read(5, &mut buf, 3).unwrap_err(), ZxError::SHOULD_WAIT);
drop(end1);
assert_eq!(
end0.write(5, data.as_slice(), 3).unwrap_err(),
ZxError::PEER_CLOSED
);
assert_eq!(end0.read(5, &mut buf, 3).unwrap_err(), ZxError::PEER_CLOSED);
}
}