1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
use alloc::string::String;
use alloc::vec::Vec;
use core::fmt::{Debug, Formatter};
use core::marker::PhantomData;
use core::ops::{Deref, DerefMut};

#[repr(C)]
pub struct UserPtr<T, P: Policy> {
    ptr: *mut T,
    mark: PhantomData<P>,
}

pub trait Policy {}
pub trait Read: Policy {}
pub trait Write: Policy {}
pub enum In {}
pub enum Out {}
pub enum InOut {}

impl Policy for In {}
impl Policy for Out {}
impl Policy for InOut {}
impl Read for In {}
impl Write for Out {}
impl Read for InOut {}
impl Write for InOut {}

pub type UserInPtr<T> = UserPtr<T, In>;
pub type UserOutPtr<T> = UserPtr<T, Out>;
pub type UserInOutPtr<T> = UserPtr<T, InOut>;

type Result<T> = core::result::Result<T, Error>;

/// The error type which is returned from user pointer.
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
pub enum Error {
    InvalidUtf8,
    InvalidPointer,
    BufferTooSmall,
    InvalidLength,
    InvalidVectorAddress,
}

impl<T, P: Policy> Debug for UserPtr<T, P> {
    fn fmt(&self, f: &mut Formatter<'_>) -> core::fmt::Result {
        write!(f, "{:?}", self.ptr)
    }
}

// FIXME: this is a workaround for `clear_child_tid`.
unsafe impl<T, P: Policy> Send for UserPtr<T, P> {}
unsafe impl<T, P: Policy> Sync for UserPtr<T, P> {}

impl<T, P: Policy> From<usize> for UserPtr<T, P> {
    fn from(x: usize) -> Self {
        UserPtr {
            ptr: x as _,
            mark: PhantomData,
        }
    }
}

impl<T, P: Policy> UserPtr<T, P> {
    pub fn from_addr_size(addr: usize, size: usize) -> Result<Self> {
        if size < core::mem::size_of::<T>() {
            return Err(Error::BufferTooSmall);
        }
        Ok(Self::from(addr))
    }

    pub fn is_null(&self) -> bool {
        self.ptr.is_null()
    }

    pub fn add(&self, count: usize) -> Self {
        UserPtr {
            ptr: unsafe { self.ptr.add(count) },
            mark: PhantomData,
        }
    }

    pub fn as_ptr(&self) -> *mut T {
        self.ptr
    }

    pub fn check(&self) -> Result<()> {
        if self.ptr.is_null() {
            return Err(Error::InvalidPointer);
        }
        if (self.ptr as usize) % core::mem::align_of::<T>() != 0 {
            return Err(Error::InvalidPointer);
        }
        Ok(())
    }
}

impl<T, P: Read> UserPtr<T, P> {
    pub fn as_ref(&self) -> Result<&'static T> {
        Ok(unsafe { &*self.ptr })
    }

    pub fn read(&self) -> Result<T> {
        // TODO: check ptr and return err
        self.check()?;
        Ok(unsafe { self.ptr.read() })
    }

    pub fn read_if_not_null(&self) -> Result<Option<T>> {
        if self.ptr.is_null() {
            return Ok(None);
        }
        let value = self.read()?;
        Ok(Some(value))
    }

    pub fn read_array(&self, len: usize) -> Result<Vec<T>> {
        if len == 0 {
            return Ok(Vec::default());
        }
        self.check()?;
        let mut ret = Vec::<T>::with_capacity(len);
        unsafe {
            ret.set_len(len);
            ret.as_mut_ptr().copy_from_nonoverlapping(self.ptr, len);
        }
        Ok(ret)
    }
}

impl<P: Read> UserPtr<u8, P> {
    pub fn read_string(&self, len: usize) -> Result<String> {
        self.check()?;
        let src = unsafe { core::slice::from_raw_parts(self.ptr, len) };
        let s = core::str::from_utf8(src).map_err(|_| Error::InvalidUtf8)?;
        Ok(String::from(s))
    }

    pub fn read_cstring(&self) -> Result<String> {
        self.check()?;
        let len = unsafe { (0usize..).find(|&i| *self.ptr.add(i) == 0).unwrap() };
        self.read_string(len)
    }
}

impl<P: Read> UserPtr<UserPtr<u8, P>, P> {
    pub fn read_cstring_array(&self) -> Result<Vec<String>> {
        self.check()?;
        let len = unsafe {
            (0usize..)
                .find(|&i| self.ptr.add(i).read().is_null())
                .unwrap()
        };
        self.read_array(len)?
            .into_iter()
            .map(|ptr| ptr.read_cstring())
            .collect()
    }
}

impl<T, P: Write> UserPtr<T, P> {
    pub fn write(&mut self, value: T) -> Result<()> {
        self.check()?;
        unsafe {
            self.ptr.write(value);
        }
        Ok(())
    }

    pub fn write_if_not_null(&mut self, value: T) -> Result<()> {
        if self.ptr.is_null() {
            return Ok(());
        }
        self.write(value)
    }

    pub fn write_array(&mut self, values: &[T]) -> Result<()> {
        if values.is_empty() {
            return Ok(());
        }
        self.check()?;
        unsafe {
            self.ptr
                .copy_from_nonoverlapping(values.as_ptr(), values.len());
        }
        Ok(())
    }
}

impl<P: Write> UserPtr<u8, P> {
    pub fn write_cstring(&mut self, s: &str) -> Result<()> {
        let bytes = s.as_bytes();
        self.write_array(bytes)?;
        unsafe {
            self.ptr.add(bytes.len()).write(0);
        }
        Ok(())
    }
}

#[derive(Debug)]
#[repr(C)]
pub struct IoVec<P: Policy> {
    /// Starting address
    ptr: UserPtr<u8, P>,
    /// Number of bytes to transfer
    len: usize,
}

pub type IoVecIn = IoVec<In>;
pub type IoVecOut = IoVec<Out>;

/// A valid IoVecs request from user
#[derive(Debug)]
pub struct IoVecs<P: Policy> {
    vec: Vec<IoVec<P>>,
}

impl<P: Policy> UserInPtr<IoVec<P>> {
    pub fn read_iovecs(&self, count: usize) -> Result<IoVecs<P>> {
        if self.ptr.is_null() {
            return Err(Error::InvalidPointer);
        }
        let vec = self.read_array(count)?;
        // The sum of length should not overflow.
        let mut total_count = 0usize;
        for io_vec in vec.iter() {
            let (result, overflow) = total_count.overflowing_add(io_vec.len());
            if overflow {
                return Err(Error::InvalidLength);
            }
            total_count = result;
        }
        Ok(IoVecs { vec })
    }
}

impl<P: Policy> IoVecs<P> {
    pub fn total_len(&self) -> usize {
        self.vec.iter().map(|vec| vec.len).sum()
    }
}

impl<P: Read> IoVecs<P> {
    pub fn read_to_vec(&self) -> Result<Vec<u8>> {
        let mut buf = Vec::new();
        for vec in self.vec.iter() {
            buf.extend(vec.ptr.read_array(vec.len)?);
        }
        Ok(buf)
    }
}

impl<P: Write> IoVecs<P> {
    pub fn write_from_buf(&mut self, mut buf: &[u8]) -> Result<usize> {
        let buf_len = buf.len();
        for vec in self.vec.iter_mut() {
            let copy_len = vec.len.min(buf.len());
            if copy_len == 0 {
                continue;
            }
            vec.ptr.write_array(&buf[..copy_len])?;
            buf = &buf[copy_len..];
        }
        Ok(buf_len - buf.len())
    }
}

impl<P: Policy> Deref for IoVecs<P> {
    type Target = [IoVec<P>];

    fn deref(&self) -> &Self::Target {
        self.vec.as_slice()
    }
}

impl<P: Write> DerefMut for IoVecs<P> {
    fn deref_mut(&mut self) -> &mut Self::Target {
        self.vec.as_mut_slice()
    }
}

impl<P: Policy> IoVec<P> {
    pub fn is_null(&self) -> bool {
        self.ptr.is_null()
    }

    pub fn len(&self) -> usize {
        self.len
    }

    pub fn is_empty(&self) -> bool {
        self.len == 0
    }

    pub fn check(&self) -> Result<()> {
        self.ptr.check()
    }

    pub fn as_slice(&self) -> Result<&[u8]> {
        if self.ptr.is_null() {
            return Err(Error::InvalidVectorAddress);
        }
        let slice = unsafe { core::slice::from_raw_parts(self.ptr.as_ptr(), self.len) };
        Ok(slice)
    }
}

impl<P: Write> IoVec<P> {
    pub fn as_mut_slice(&mut self) -> Result<&mut [u8]> {
        if self.ptr.is_null() {
            return Err(Error::InvalidVectorAddress);
        }
        let slice = unsafe { core::slice::from_raw_parts_mut(self.ptr.as_ptr(), self.len) };
        Ok(slice)
    }
}